Polynomial approximations for the matrix logarithm with computation graphs

Polynomial approximations for the matrix logarithm with computation graphs, E. Jarlebring, J. Sastre, J. Ibáñez, Linear Algebra Applications, in Press (open access), 2024. https://doi.org/10.1016/j.laa.2024.10.024, https://arxiv.org/abs/2401.10089, code.

In this article the matrix logarithm is computed by using matrix polynomial approximations evaluated by using matrix polynomial multiplications and additions. The most popular method for computing the matrix logarithm is a combination of the inverse scaling and squaring method in conjunction with a Padé approximation, sometimes accompanied by the Schur decomposition. The main computational effort lies in matrix-matrix multiplications and left matrix division. In this work we illustrate that the number of such operations can be substantially reduced, by using a graph based representation of an efficient polynomial evaluation scheme. A technique to analyze the rounding error is proposed, and backward error analysis is adapted. We provide substantial simulations illustrating competitiveness both in terms of computation time and rounding errors.

On the backward and forward error of approximations of analytic functions and applications to the computation of matrix functions

Jorge Sastre, Javier Ibáñez, Journal of Computational and Applied Mathematics, Volume 419, 2003, 114706, https://doi.org/10.1016/j.cam.2022.114706

A new formula to write the forward error of Taylor approximations of analytical functions in terms of the backward error of those approximations is given, overcoming problems of the backward error analysis that use inverse functions. Examples for the backward error analysis of functions such as the matrix cosine cos(A) or cos(sqrt(A)) are given.