Beyond Paterson–Stockmeyer: Advancing Matrix Polynomial Computation

For over fifty years, the Paterson–Stockmeyer method has been considered the benchmark for efficient matrix polynomial evaluation. In our recent open access article, we provide a summary of recent advances in this area and present a constructive scheme that evaluates a degree‑20 matrix polynomial using only 5 matrix multiplications—two fewer than Paterson–Stockmeyer.

We also show how the coefficients of this scheme can be derived from the solutions of a single equation involving one coefficient, and we include the full process in our supplementary materials.


Publication Details

  • Title: Beyond Paterson–Stockmeyer: Advancing Matrix Polynomial Computation
  • Authors: J. Sastre, J. Ibáñez, J. M. Alonso, E. Defez
  • Journal: WSEAS Transactions on Mathematics, Vol. 24, pp. 684–693, 2025
  • Conference: 5th Int. Conf. on Applied Mathematics, Computational Science and Systems Engineering (AMCSE), Paris, France, April 14–16, 2025
  • Open Access: https://doi.org/10.37394/23206.2025.24.68
  • Supplementary Material:

Main Contributions

  • Survey of recent advances in matrix polynomial evaluation.
  • Constructive result: A method to compute a degree‑20 matrix polynomial with just 5 matrix multiplications, improving efficiency over Paterson–Stockmeyer (needing 7 matrix products).
  • Coefficient derivation: All coefficients can be obtained by solving an equation in one unknown, documented step by step in the .txt file.
  • Generalization: We propose a framework for evaluation formulas of the type yk2(A)y_{k2}(A), see with Ck2C_k^2​ available variables, and set two conjectures for future research.

Why This Matters

Reducing matrix multiplications significantly lowers computational cost, which is crucial for:

  • Large-scale scientific computing
  • Numerical linear algebra
  • AI and machine learning models involving matrix functions

Access and Resources


Next Steps

If you work with matrix functions or large-scale computations:

  • Try the 5-multiplication scheme for degree‑20 polynomials.
  • Benchmark against Paterson–Stockmeyer.
  • Explore adapting the rational-coefficient approach to other degrees.

We welcome collaboration on proving the conjectures and extending these ideas to broader polynomial families.