Accurate Approximation of the Matrix Hyperbolic Cosine Using Bernoulli Polynomials

José M. Alonso, Javier Ibáñez, Emilio Defez and Fernando Alvarruiz. Mathematics, vol. 11, 520, 2022. https://doi.org/10.3390/math11030520.

This paper presents three different alternatives to evaluate the matrix hyperbolic cosine using Bernoulli matrix polynomials, comparing them from the point of view of accuracy and computational complexity. The first two alternatives are derived from two different Bernoulli series expansions of the matrix hyperbolic cosine, while the third one is based on the approximation of the matrix exponential by means of Bernoulli matrix polynomials. We carry out an analysis of the absolute and relative forward errors incurred in the approximations, deriving corresponding suitable values for the matrix polynomial degree and the scaling factor to be used. Finally, we use a comprehensive matrix testbed to perform a thorough comparison of the alternative approximations, also taking into account other current state-of-the-art approaches. The most accurate and efficient options are identified as results.

Accurate approximation of the hyperbolic matrix cosine using Bernouilli matrix Polynomials

Accurate approximation of the hyperbolic matrix cosine using Bernouilli matrix Polynomials, E. Defez, J. Ibáñez, J.M. Alonso, J.Peinado and J. Sastre, in the International Conference Mathematical Modeling in Engineering & Human Behaviour 2021,  Mathematical Modelling Conference Series at the Institute for Multidisciplinary MathematicsUniversitat Politècnica de València,  July, 14-16, 2021, Valencia (Spain)

Advances in the Approximation of the Matrix Hyperbolic Tangent

Advances in the Approximation of the Matrix Hyperbolic Tangent (License CC BY 4.0), J. Ibáñez, J.M. Alonso, J. Sastre, E. Defez, P.A. Alonso, Mathematics 20219(11), 1219; https://doi.org/10.3390/math9111219Researchgate Link.
In this paper, we introduce two approaches to compute the matrix hyperbolic tangent. While one of them is based on its own definition and uses the matrix exponential, the other one is focused on the expansion of its Taylor series. For this second approximation, we analyse two different alternatives to evaluate the corresponding matrix polynomials. This resulted in three stable and accurate codes, which we implemented in MATLAB and numerically and computationally compared by means of a battery of tests composed of distinct state-of-the-art matrices. Our results show that the Taylor series-based methods were more accurate, although somewhat more computationally expensive, compared with the approach based on the exponential matrix. To avoid this drawback, we propose the use of a set of formulas that allows us to evaluate polynomials in a more efficient way compared with that of the traditional Paterson–Stockmeyer method, thus, substantially reducing the number of matrix products (practically equal in number to the approach based on the matrix exponential), without penalising the accuracy of the result.