Polynomial approximations for the matrix logarithm with computation graphs

Polynomial approximations for the matrix logarithm with computation graphs, E. Jarlebring, J. Sastre, J. Ibáñez, Linear Algebra Applications, in Press (open access), 2024. https://doi.org/10.1016/j.laa.2024.10.024, https://arxiv.org/abs/2401.10089, code.

In this article the matrix logarithm is computed by using matrix polynomial approximations evaluated by using matrix polynomial multiplications and additions. The most popular method for computing the matrix logarithm is a combination of the inverse scaling and squaring method in conjunction with a Padé approximation, sometimes accompanied by the Schur decomposition. The main computational effort lies in matrix-matrix multiplications and left matrix division. In this work we illustrate that the number of such operations can be substantially reduced, by using a graph based representation of an efficient polynomial evaluation scheme. A technique to analyze the rounding error is proposed, and backward error analysis is adapted. We provide substantial simulations illustrating competitiveness both in terms of computation time and rounding errors.