Modelling acoustics on the Poincaré half-plane. Michael M. Tung. Journal of Computational and Applied Mathematics DOI10.1016/j.cam.2017.10.037
Abstract: Novel advances in the field of metamaterial research have permitted the engineering of devices with extraordinary characteristics. Here, we explore the possibilities in transformation acoustics to implement a model for the simulation of acoustic wave propagation on the Poincaré half-plane-the simplest model possessing hyperbolic geometry and also of considerable historical interest. We start off from a variational principle on the given spacetime manifold to find the design description of the model in the laboratory. After examining some significant geometrical and physical properties of the Poincaré half-plane model, we derive a general formal solution for its acoustic wave propagation. A numerical example for the evolution of the acoustic potential on a rectangular region of the Poincaré half-plane concludes this discussion.